Klinische Chemie & Laboratoriumsdiagnostik Vorlesung: Säure-Basen-Analytik und Blutgasanalytik

Dr. med. Bernhard Schlüter

Centrum für Laboratoriumsmedizin - Zentrallaboratorium -Universitätsklinikum Münster Albert-Schweitzer-Straße 33 D-48149 Münster Tel.: 0251 83-47221 Fax: 0251 83-47225 zab-lehre.uni-muenster.de schlueter@uni-muenster.de

Reanimation Notfallmedizin

Einsatzgebiete

Intensivmedizin

Schocklunge

- 3 -

-7-

Einsatzgebiete

Schädel-Hirn-Trauma

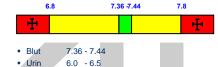
Intoxikationen

Sommersemester 2012

- 9 -

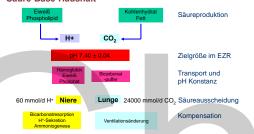
- 13 -

Einsatzgebiete


Lungenfunktionsprüfung

pCO₂ 40 mm Hg

pO₂ 100 mm Hg


pH Spektrum

Einsatzgebiete

Säure-Base-Haushalt

Henderson-Hasselbalch

pH = pK + log
$$\frac{\text{cHCO}_3}{\text{cH}_2\text{CO}_3}$$
 = pK + log $\frac{\text{cHCO}_3}{\text{pCO}_2}$ * 0,0307
pH = 6,105 + log $\frac{24,2}{1,23}$ = 7,40 bei pCO₂ = 40 mm Hg

Lunge

Säure-Base-Parameter

- Gemessen
- pH pCO₂
- Berechnet
- Bicarbonat (aktuell)
- Bicarbonat (Standard)
- Basenabweichung (BE)

Pulmonale O₂-Aufnahme

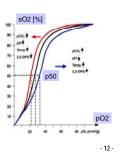
- pO₂ Oxygenierungsparameter
- abhängig von

FiO₂ Ventilation

Diffusion Ventilation/Perfusions-Match

- 10 -

O₂-Transport


Sauerstoffkonzentration im Blut

O₂-Versorgung des Gewebes

- O₂-Affinität des Hb O2-Abgabefähigkeit im Gewebe
- p50 als Halbsättigungsdruck Lageparameter der O₂-Bindungskurve

- 8 -

- 16 -

- 11 -

Normalwerte arteriell

pΗ	7,36 - 7,44
oCO ₂	35 - 45 mm Hg
HCO ₃ -	22 - 26 mmol/l
BE	- 2 bis +2 mmol/l
OO_2	75 - 100 mm Hg
sO ₂	> 95 %
ctO ₂	180 – 230 ml/l
CtO ₂	180 – 230 ml/l

Säure-Base-Störungen

Klassifizierung	Azidosen: häufig Alkalosen: seltener
Ursachen	Respiratorisch
	Metabolisch
	Kombiniert
Kompensation	Respiratorisch: schnell
	Metabolisch: langsam

Diagnostik-Nomogramm

Klinische Folgen bei Azidose

Herz-Kreislauf	Herzleistung ▼ Gefäßreaktivität ▼ Renale Perfusion ▼
Metabolismus	Hyperkaliämie
	Insulinresistenz
	Calcium-Mobilisierung
ZNS	Ödemneigung
	Krämpfe

- 14 -- 15 -

Metabolische Azidose Additionsazidose Anionenlücke Subtraktionsazidose Pathomechanismus: Bicarbonatverlust Relativer Überschuss an fixen Säuren Pathomechanismus: Säurezufuhr/-bildung • enteral: renal: ■ [Na+] - ([Cl⁻] + [HCO₃⁻]) Proximal tubuläre Azidose Pancreassaft/Galle-Drainagen Ketoazidose Normal 12 + 4 mmol/l Carboanhydrase-Hemmer Diarrhoe Lactatazidose Na⁺ Vergrößert bei Konzentrationsanstieg BE erniedriat Vergiftungen "ungewöhnlicher" Anionen Normochlorämie! pH erniedrigt pH normal Vergrößerte Anionenlücke! pCO₂ norma CO₂ erniedrigt Plasma Normale Anionenlücke! Hyperchlorämie! unkompensier voll kompensiert Werte in mmol/l - 17 -- 18 -- 19 -- 20 -Retentionsazidose Respiratorische Azidose Pathomechanismen der respiratorischen Azidose Pathomechanismen der respiratorischen Azidose Störungen der Atemmechanik Lungenparenchymschaden Pathomechanismus: Mangelnde Säureexkretion Alveoläre Hypoventilation Verminderter Atemantrieb Neuromuskuläre Störungen Akutes oder chronisches Nierenversagen Distal tubuläre Azidose pCO₂ erhöht Fehlende Mineralocorticoidwirkung pH erniedrigt pH normal Blutazidose bei schwach saurem oder alkalischem Urin! BE normal BE erhöht unkompensiert voll kompensiert Myasthenia gravis Lungenemphysem - 23 -- 21 -- 22 -- 24 -Metabolische Alkalose Subtraktionsalkalose Respiratorische Alkalose Klinische Folgen bei Alkalose Abnahme der freien Ca++-Ionen Pathomechanismus Säureverlust Alveoläre Hyperventilation Relativer Überschuss an Basen Neuromuskuläre Übererregbarkeit gastrointestinal: Tetanie möglich Diuretika, Mineralocorticoidexzess Erbrechen, Drainager Hypokaliämie oft begleitend Urin pH meist alkalisch pCO₂ erniedrigt [K+] x [HCO₃-] x [HPO₄--] pH erhöht pH erhöht pH normal pH normal [Ca++] x [Mg++] x [H+] pCO₂ erhöht BE normal BE erniedrigt pCO₂ norma unkompensiert voll kompensiert unkompensiert voll kompensier Pylorusstenose Roche-Lexikon Medizin 1999 - 27 -- 25 -- 26 -- 28 -Pathomechanismen Cerebraler Blutfluss und pCO₂ Blutgasanalysatoren Präanalytik Arterielles Blut Gesteigerter Atemantrieb Benchtop Analyser Handhelds Psychogen Alternative: arterialisiertes Kapillarblut ZNS-Infektion ZNS-Trauma Reflektorisch Ausschließlich Heparin antikoaguliertes Blut Messung sofort (lebende Probe !) • Alternative: kurze Probenlagerung in Eiswasser

PaCO₂ (kPa)

aus: Thieme Lehrbuch Physiologie, 2005

-29- -30- -31-

- 32 -